
Lecture 4



Inheritance

 Inheritance enables new objects to inherit the properties of existing 

objects.

A class that is used as the basis for inheritance is called a superclass or 

base class. A class that inherits from a superclass is called a subclass or 

derived class



Encapsulation

 Encapsulation is a concept that binds together the data and methods 

that manipulate the data, and that keeps both safe from outside 

interference and misused.



Access Modifiers

 Public: Access is not restricted.

 Protected: Access is limited to the containing class or types derived from the

containing class.

 Private: Access is limited to the containing type.

 Internal: Access is limited to the current assembly.

 Protected internal: Access is limited to the current assembly or types derived

from the containing class.



Inheritance example
class Program

{
static void Main(string[] args)
{

Animal animal = new Animal();
Dogs dog = new Dogs();
Birds bird = new Birds();
bird.FeedAnimal();

}
}

class Animal
{

public string animalName;
public DateTime animalBirthDate;

public void FeedAnimal()
{

}
}

class Dogs : Animal

{

public string dogBreed;

public string dogIntelligence;

public bool isEasyToTrain;

}

class Birds : Animal

{

public string birdColor;

public string birdCountry;

}



Vehicle inheritance



Polymorphism
class Program

{

static void Main(string[] args)

{

Shapes[] shapes = new Shapes[4];

shapes[0] = new Shapes();

shapes[1] = new Circles();

shapes[2] = new Lines();

shapes[3] = new Triangle();

foreach (var shape in shapes)

{

shape.Draw();

}

}

}

class Circles : Shapes

{

public new void Draw()

{

Console.WriteLine("I am circle");

}

}

class Lines : Shapes

{

public override void Draw()

{

Console.WriteLine("I am line");

}

}

class Shapes

{

public virtual void Draw()

{

Console.WriteLine("I am a simple shape");

}

}

class Triangle : Shapes

{

public override void Draw()

{

Console.WriteLine("I am triangle");

}

}



Polymorphism

 Polymorphism means having many forms. usually expressed as 'one

interface, multiple functions’.

 Overriding allows you to change the functionality of a method in a child

class.



Abstract class

 Abstraction is a concept or an idea not associated with any specific instance.

class Program
{

static void Main(string[] args)
{

Lines line = new Lines();
line.SayHi(); line.Draw();

}
}

abstract class Shapes
{

abstract public void Draw();
public void SayHi()
{

Console.WriteLine("Hi from the 
abstact class");

}
}

class Lines : Shapes
{

public override void Draw()
{

Console.WriteLine("Hi I am a line");
}

}


